Geometric Hermite curves with minimum strain energy

نویسندگان

  • Jun-Hai Yong
  • Fuhua Cheng
چکیده

The purpose of this paper is to provide yet another solution to a fundamental problem in computer aided geometric design, i.e., constructing a smooth curve satisfying given endpoint (position and tangent) conditions. A new class of curves, called optimized geometric Hermite (OGH) curves, is introduced. An OGH curve is defined by optimizing the magnitudes of the endpoint tangent vectors in the Hermite interpolation process so that the strain energy of the curve is a minimum. An OGH curve is not only mathematically smooth, i.e., with minimum strain energy, but also geometrically smooth, i.e., loop-, cuspand fold-free if the geometric smoothness conditions and the tangent direction preserving conditions on the tangent angles are satisfied. If the given tangent vectors do not satisfy the tangent angle constraints, one can use a 2-segment or a 3-segment composite optimized geometric Hermite (COH) curve to meet the requirements. Two techniques for constructing 2-segment COH curves and five techniques for constructing 3-segment COH curves are presented. These techniques ensure automatic satisfaction of the tangent angle constraints for each OGH segment and, consequently, mathematical and geometric smoothness of each segment of the curve. The presented OGH and COH curves, combined with symmetry-based extension schemes, cover tangent angles of all possible cases. The new method has been compared with the high-accuracy Hermite interpolation method by de Boor et al. and the Pythagorean-hodograph (PH) curves by Farouki et al. While the other two methods both would generate unpleasant shapes in some cases, the new method generates satisfactory shapes in all the cases.  2003 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Hermite Curves Based on Curvature Variation Minimization

Based on the smoothness criterion of minimum curvature variation of the curve, tangent angle constraints guaranteeing an optimized geometric Hermite (OGH) curve both mathematically and geometrically smooth is given, and new methods for constructing composite optimized geometric Hermite (COH) curves are presented in this paper. The comparison of the new methods with Yong and Cheng’s methods base...

متن کامل

An Optimal G^2-Hermite Interpolation by Rational Cubic Bézier Curves

In this paper, we study a geometric G^2 Hermite interpolation by planar rational cubic Bézier curves. Two data points, two tangent vectors and two signed curvatures interpolated per each rational segment. We give the necessary and the sufficient intrinsic geometric conditions for two C^2 parametric curves to be connected with G2 continuity. Locally, the free parameters w...

متن کامل

Topological criterion for selection of quintic Pythagorean-hodograph Hermite interpolants

A topological approach to identifying the “good” interpolant among the four distinct solutions to the first–order Hermite interpolation problem for planar quintic Pythagorean–hodograph curves is presented. An existence theorem is proved, together with a complete analysis of uniqueness/non– uniqueness properties. A simple formula for finding the “good” solution, without appealing to curve fairne...

متن کامل

Algorithm for Geometric

We show that the geometric Hermite interpolant can be easily calculated without solving a system of nonlinear equations. In addition we give geometric conditions for the existence and uniqueness of a solution to the interpolation problem. Finally we compare geometric Hermite interpolation with standard cubic Hermite interpolation. x1 Introduction Since parametric representations of curves are n...

متن کامل

On the variety of planar spirals and their applications in computer aided design

In this paper we discuss the variety of planar spiral segments and their applications in objects in both the real and artificial world. The discussed curves with monotonic curvature function are well-known in geometric modelling and computer aided geometric design as fair curves, and they are very significant in aesthetic shape modelling. Fair curve segments are used for two-point G1 and G2 Her...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computer Aided Geometric Design

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2004